

Company presentation for

Our strategy

Strong brand identity

RATO

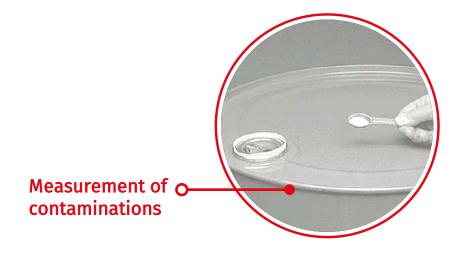
The First Line of Defense Against Contamination

Des-Case distributor: Rato Industrial Solutions Sp. z o.o. Sp. K. ul Dolna 2B, 84-230 Rumia biuro@rato.pl +48 58 672 62 72

The Problem We Help Solve - Contamination

Particulate contamination is the most common, most serious failure culprit.

- Cost of removal = 10X cost of preventing
- Contamination is a leading cause of machinery failure by directly impairing the lubricant's ability to control friction, wear and corrosion
- Contamination is responsible for as much as 80% of the wear that leads to mechanical failure



Particulate Measurement How Clean Is Clean?

ISO Cleanliness Codes –
 indicates ranges of particles at
 micron increments: R4/R6/R14

•	Dirt in 208 Liter drum of oil =
	ISO 16/13 = ½ Teaspoon

Size microns	Count Larger Than Size per ml						
4	1,752	0-					
6	517	0—					
10	144						
14	55	0—					
20	25						
50	1,3						

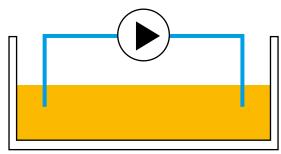
Number of	f particles / ml	Range number						
More than	Less than or equal to							
80,000	160,000	24						
40,000	80,000	23						
20,000	40,000	22 21						
10,000	20,000							
5,000	10,000	20						
2,500	5,000	19						
1,300	2,500	18						
640	1,300	17						
320	640	16						
160	320	15						
80	160	14						
40	80	13						
20	40	12						
10	20	11						
5	10	10						
2.5	5	9						
1.3	2.5	8						
0.64	1.3	7						
0.32	0.64	6						
0.16	0.32	5						
0.08	0.16	4						
0.04	0.08	3						
0.02	0.04	2						
0.01	0.02	1						

Lower Particle Count = Better Reliability

New Cleanliness Level (ISO COD)

	2	0/17	19	/16	18	/15	17,	/14	16	/13	15	15/12 14/11		13/10		12/9		11/8		10/7		
26/23	5	3	7	3,5	9	4	>10	5	>10	6	>10	7,5	>10	9	>10	>10	>10	>10	>10	>10	>10	>10
	4	2,5	4,5	3	6	3,5	6,5	4	7,5 >10	5 5	8,5 >10	6,5 6	10 >10	7 7	>10 >10	9 9	>10 >10	10 >10	>10 >10	>10 >10	>10 >10	>10 >10
25/22	4 3	2,5 2	5 3,5	3 2 , 5	4,5	3 , 5 3	9 5	4 3 , 5	6,5	5 4	>10 8	5	9	, 6	10	9 7,5	>10	>10 9	>10	>10 >10	>10	>10 >10
27/24	3	2	4	2,5	6	3	7	4	9	5	>10	6	>10	7	>10	8	>10	10	>10	>10	>10	>10
24/21	2,5	1,5	3	2	4	2,5	5	3	6,5	4	7,5	5	8,5	6	9,5	7	>10	8	>10	10	>10	>10
23/20	2	1,5	3	2	4	2,5	5	3	7	3,5	9	4	>10	5	>10	6	>10	8	>10	9	>10	>10
	1,7	1,3	2,3	1,5 1,6	3	2	3,7	2,5	5 5	3	6	3,5	7	4	8 >10	5	10 >10	6,5	>10 >10	8,5 7	>10 >10	>10 >10
22/19	1,6 1,4	1,3 1,1	2 1,8	1,0	3 2,3	2 1,7	4	2 , 5 2	3,5	3 2,5	7 4 , 5	3 , 5	8 5,5	4 3,5	>10 7	5 4	>10 8	6 5	10	, 5,5	>10	8,5
24/40	1,3	1,2	1,5	1,5	2	1,7	3	2	4	2,5	5	3	7	3,5	9	4	>10	5	>10	7	>10	10
21/18	1,2	1,1	1,5	1,3	1,8	1,4	2,2	1,6	3	2	3,5	2,5	4, 5	3	5	3,5	7	4	9	5,5	10	8
20/17			1,3	1,2	1,6	1,5	2	1,7	3	2	4	2,5	5	3	7	4	9	5	>10	7	>10	9
			1,2	1,05	1,5 1,3	1,3 1,2	1,8 1,6	1,4 1,5	2,3 2	1,7 1,7	3	2	3,5 4	2,5 2,5	5 5	3	6	4 4	8	5,5 6	10 >10	7 8
19/16					1,2	1,2	1,5	1,3	1,8	1,7	2,2	1,7	3	2,3	3,5	2 , 5	5	3,5	7	4 , 5	9	6
18/15						,	1,3	1,2	1,6	1,5	2	1,7	3	2	4	2,5	5	3	7	4,5	>10	6
10/15							1,2	1,1	1,5	1,3	1,8	1,5	2,3	1,7	3	2	3,5	2,5	5,5	3,7	8	5
17/14									1,3	1,2	1,6	1,5	2	1,7	3	2	4	2,5	6	3	8	5 2 F
									1,2	1,1	1,5 1,3	1,3 1,2	1,8 1,6	1,5 1,5	2,3 2	1,7 1,7	3	2	4	2,5 3,5	6	3,5 4
16/13		Hudra	ulica	0		D - II'	. a Ela				1,2	1,1	1,5	1,3	1,8	1,5	2,3	1,8	3,7	3	4,5	3,5
15/12		Hydra Diesel				Rolli Bear	ng Ele	ment					1,3	1,2	1,6	1,5	2	1,7	3	2	4	2,5
13/12		Dieset				Dear	mgs						1,2	1,1	1,5	1,4	1,8	1,5	2,3	1,8	3	2,2
14/11															1,3 1,3	1,3 1,2	1,6 1,6	1,6 1,4	2 1,9	1,8 1,5	3 2,3	2 1,8
12/10					\forall										1,0	-,-	1,4	1,2	1,8	1,5	2,5	1,8
13/10		Journ	al Bea	arings		Ge	arbox	es									1,2	1,1	1,6	1,3	2	1,6
		& Turbo Machinery				& Other												© (Copyrig	ht Nori	a Corpo	oration

used with permission


The Cost of Particulate Ingression

Pump 250l/min

4.4 tons of dirt pass through pump each year Expected pump life - 2 years

Pump 250l/min

25 kg of dirt pass through pump each year Expected pump life – 14 years

Number of Particles per 100 ml of fluid									
Particle Size	ISO 21/18	ISO 14/11							
Particles larger than > 6µm	1,000,000-2,000,000	8,000-16,000							
Particles larger than> 14µm	130,000-250,000	1,000-2,000							

Moisture

 Water is the second most destructive contaminant.

 Water plays a huge role long before it is detected.

Water Forms

Oil appears bright and clear.
Difficult to separate.

EMULSIFIED WATER

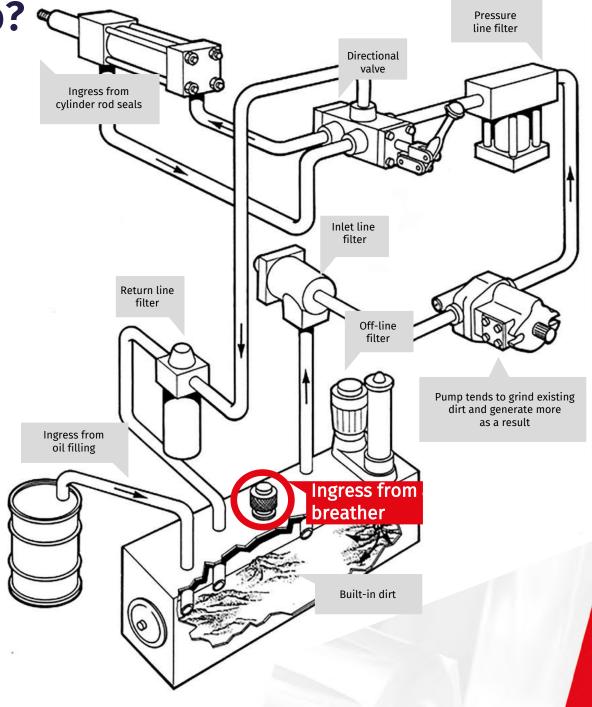
Very small droplets dispersed in oil. Oil viscosity may go UP (like mayonnaise). Tiny amounts of detergent engine oil can contaminate industrial oils.

FREE WATER Large drops that readily settle out.

PARTICULATE MEASUREMENT

How Clean Is Clean?

With few exceptions, new oil is never clean enough for common applications. New oil must be filtered before installation to provide any reasonable level of cleanliness.

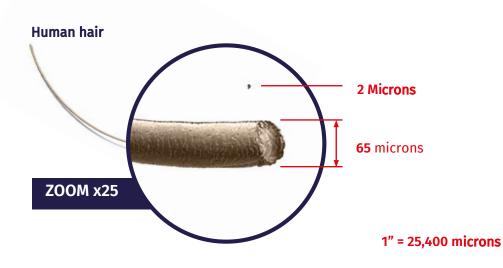

New oil can contain 8 to 16 times more particle contamination and 2 to 4 times more water then the manufactures recommendation

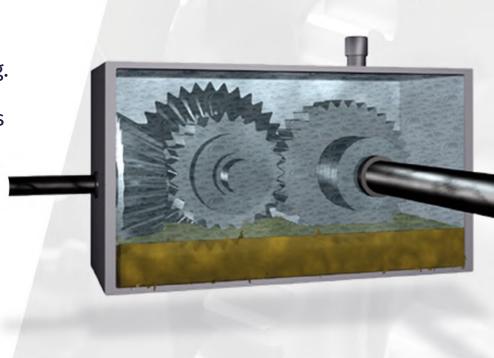
What are we going to do? <

Total system dirt Built-in dirt Ingress from oil Ingress through breather Generated in cylinder Ingress from cylinder rod seal Generated in pump Generated in valve Dirt removed by line filters Dirt removed by off-line filter

IMPORTANT CHARACTERISTICS OF BREATHER TECHNOLOGY

Breather's role in Contamination Control


The breathers are not the same as DES CASE Breathers



Breather's role in Contamination Control

- Traditional breather caps are a primary source of entry for contaminants.
- Most are rated around 40-microns.
- Small particles (3-20 microns) are often the most damaging.
- No protection against ingression of water and water vapors

How Big is a Micron?

BREATHER PRODUCT OVERVIEW

Desiccant Breathers- Keeping Lubricants Clean & Dry

Explore the Desiccant Breather

FOAM PADS

Foam filters at the top and bottom of the breather capture oil mist and disperse incoming air evenly over filtration and drying areas.

RUGGED HOUSING •

Shock-absorbing polycarbonate casing provides reliable service and easy maintenance on most breathers. .

FILTER ELEMENTS

Unique loops allow particles to release during system exhalation, helping increase breather life.

THREADED MOUNTING

Internal or external threaded mount allows for durability and stability and easily replaces standard breather caps with one of several adapters.

Polyester filter elements at the top and bottom of the breather remove airborne contamination. Unique loops allow particles to release during system exhalation, helping increase breather life.

WATER VAPOR ADSORBENT

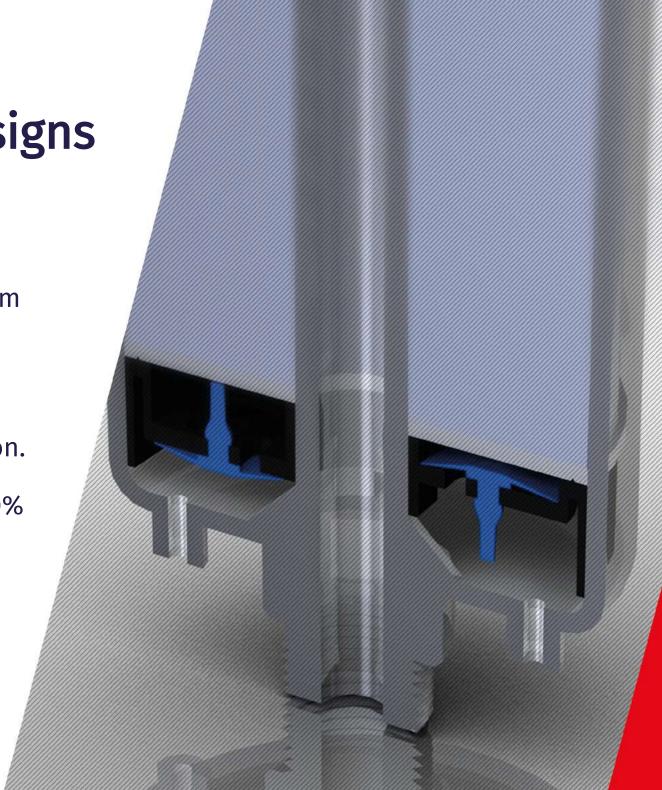
Silica gel adsorbs water from incoming air and can hold up to 40% of its weight. Condition is indicated by change of color from blue to light pink.

AIR VENTS

Individual air intakes are opened based on the flow requirements of the system. Plugs keep unit inactive until use.

Desiccant Breathers- How do they work?

- Removes moisture in the headspace of equipment
- Eliminates rust-forming condensation
- Prevents sludge deposits and watercontaminated oil
- Prevents contamination ingress
- Provides longer lubricant life
- Reduces wear and tear on equipment, prolongs life


SEEING PINK?


A pink breather means it has done its job keeping moisture out of your lubricants. Time to replace the breather with a new one. Des-Case Hybrid Breathers new designs

"Controlled breathing" mechanism Hybrid miniature breather

Internally mounted umbrella check valves, for added protection.

Check Valve cracking pressure 50% less than previous version (0.23 psi)

Extreme Duty Breather

Rugged Construction

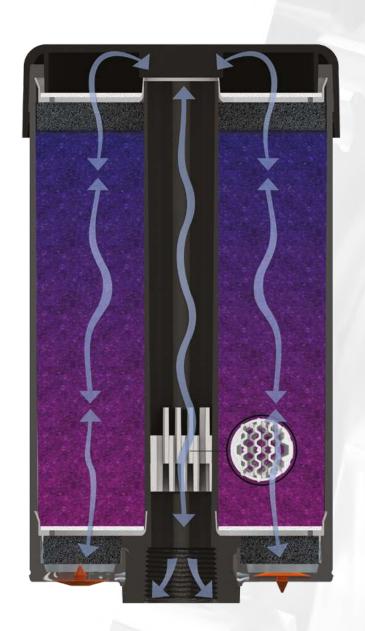
- Integrates design advantages of standard breathers
- Enhances for high vibration and elevated temperatures
- Automotive grade polymer housing for high strength and vibration dampening
- Thick walled design greatly increases resistance to handling abuse

Increased Longevity

- Large amount of desiccant
- Optional integrated fluorosilicone check valve system extends useful life

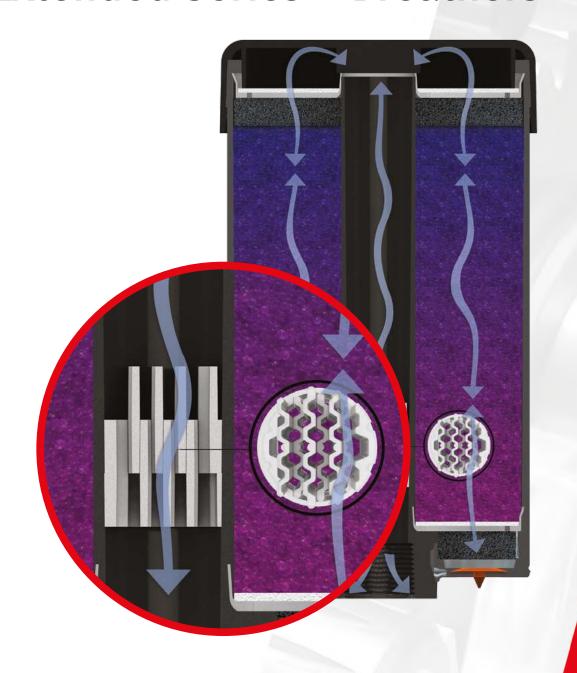
Ease / Broad Range of Use

Higher airflow, additional adapters



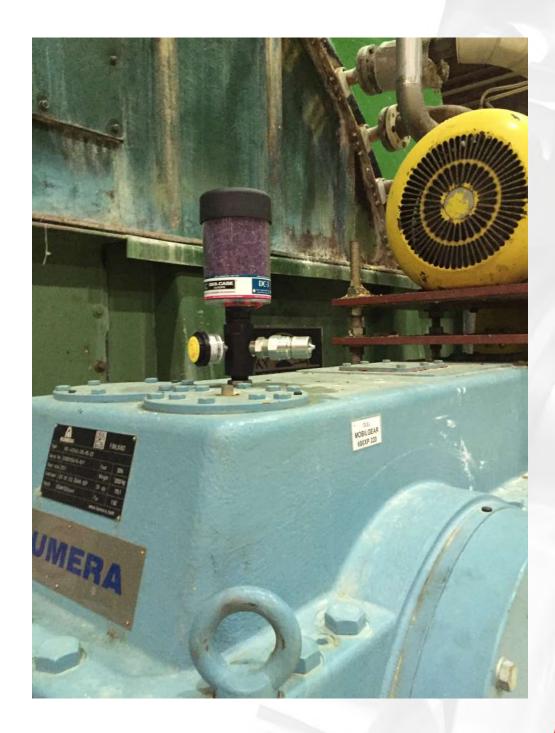
Extended Series™ Breathers

Check-valves plus new honeycomb


- Extended Series (EX) breathers combine the trusted materials
- Design of our Standard breathers with the check-valves of our VentGuard plus a new honeycomb
- Technology oil mist reducing feature, higher air flows, and more than double the desiccant.

Additional Features of Extended Series™ Breathers

"Honeycomb"

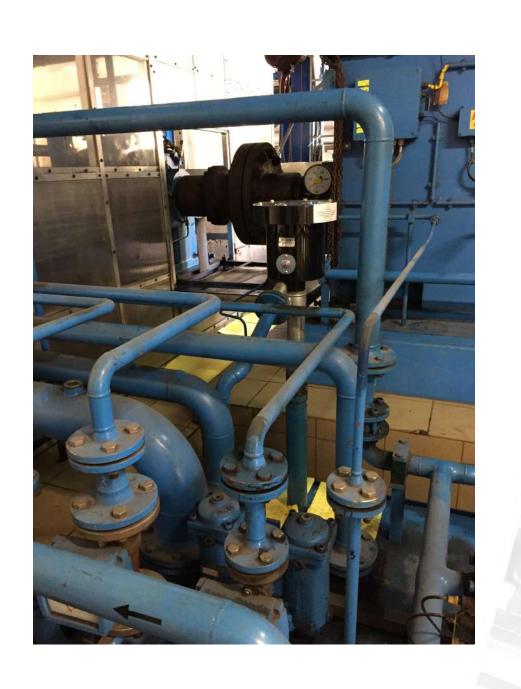

Mimicking nature's intricate honeycomb design, this feature allows oil mist to coalesce and drain back into the reservoir, rather than compromising the desiccant. Available in Extended Series breathers.

Rebuildable Steel Breathers

- Rugged Carbon steel or optional Stainless Steel Housing
- Multi-Tiered Filtration Process
- Water Vapor Adsorbent
- 1-micron Absolute Filter Media
- High Temperatures and Corrosive Environments
- Airflow from 150 2,100 GPM

Ideal for Large Volume Tanks and High Airflow Applications

DESICCANT BAG FILTER



SIGHT GLASS INDICATOR

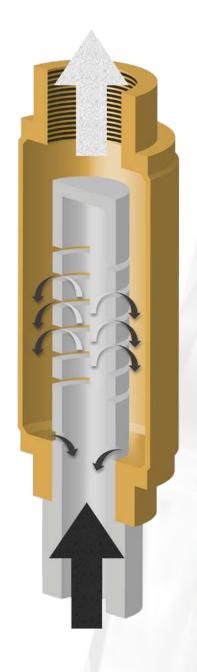
REPLACEMENT FILTER ELEMENT

Non-Desiccant Breathers

Non-Desiccant (ND) breathers prevent contamination ingress in low humidity environments or in applications where water-based fluids are in use (e.g. water glycol hydraulic fluid). They help control contamination by preventing free water as well as particles down to 1 micron from getting into the reservoir.

Single Position Vacuum Indicator Adapter

VAPORGUARD ADAPTERS

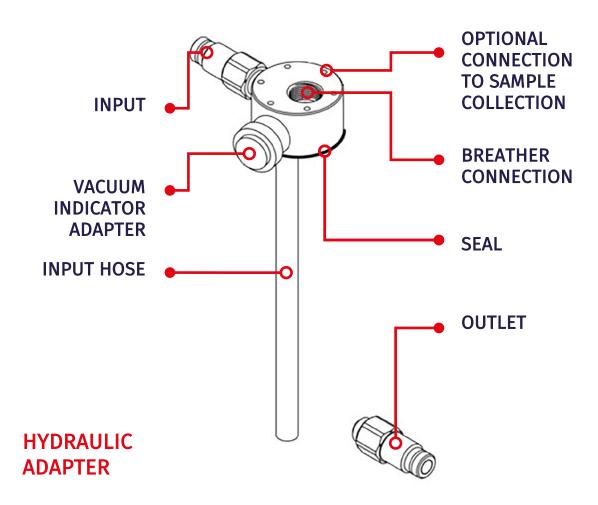


The VaporGuard™ Oil Mist Adapter

- The oil saturated air breather is removed from the vent port on the bearing housing.
- A new air filter is then turned into the top port of the oil mist adapter.
- The migrating vapors continue to condense back into oil, but now they are contained inside the adapter.
- The air, purged of oil mist by VaporGuard, can now exit through the vent port without contaminating the air filter.
- The oil mist that condensed inside
 VaporGuard is uncontaminated and is returned to the bearing housing to continue lubricating the bearing

Protect your lubricants and equipment with Des-Case specialty filtration products.

Adapter Kits


FLUID HANDLING

Portable Filtration - Filter carts

Offer portable, offline filtration and are ideal for use on small to medium-sized reservoirs with low flow rates. They are fully customizable with options for flow rate, connections, filters, and more.

Filtration process

Drum Filter Cart

The drum filter cart

Is a customizable, all-in-one cart that is ideal for pre-cleaning, protecting, and transferring oil from a conveniently attachable, secured drum. A drum adapter kit with a desiccant breather is included for complete contamination control.

Handheld Drum Topper

Compact, portable, and customized for your application, the handheld drum topper is an option you can carry wherever you need to go or affix securely atop an oil drum.

OLD VERSION

NEW VERSION

Dedicated Filtration

Panel units

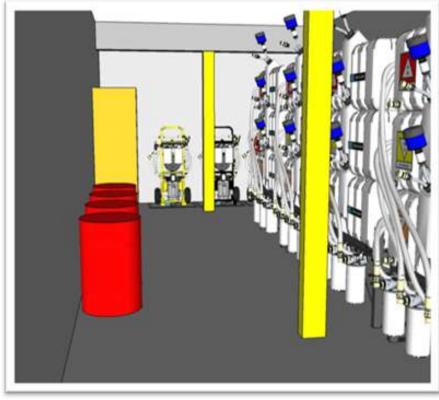
Are ideal for mineral-based industrial fluids in small to medium-sized reservoirs with low flow rates. The panel unit can be mounted where you need it most for applications that need regular filtration, or a maintenance location where you bring equipment to be filtered.

LT-LMS

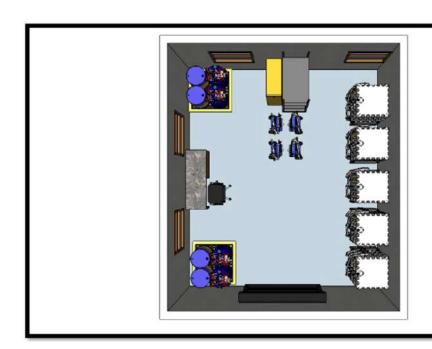
Simple, stackable and easy storage meets solid contamination control practices in a unique design with the Des-Case LT-Series Lubricant Management System. Dedicated filtration per container ensures no cross-contamination of fluids, while disposable desiccant breathers prevent dirt and water ingression.

LT-LMS Applications

LT-LMS Applications



Lubricant Storage & Filtration



Complimentary Lube Room Design

Complimentary Lube Room Design

VISUAL OIL ANALYSIS

VISUAL OIL ANALYSIS

Visual Oil Analysis tools allow users to monitor the level and condition of oil, as well as collect and drain any collected water or other contaminants.

THE NEW OIL **SIGHT GLASS**

3-D BULLSEYE®

OIL LEVEL INDICATORS

OIL SIGHT GLASS LEVEL MONITOR

The Clear Difference

VS

IsoLinkTM Oil Transfer Containers

IsoLink™ Oil Transfer Containers

The first best practice solution to keep oil clean and dry during oil transfer.

With non-desiccant and desiccant breather options, as well as quick connects for clean filling, IsoLink isolates oil from the environment providing the ultimate in best practice contamination control.

Thank you for your attention

Distributor:

Rato Industrial Solutions Sp. z o.o. Sp. K. ul Dolna 2B, 84-230 Rumia biuro@rato.pl +48 58 672 62 72

